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a b s t r a c t

We describe an immersed boundary method for problems of fluid–solute-structure interac-
tion. The numerical scheme employs linearly implicit timestepping, allowing for the stable
use of timesteps that are substantially larger than those permitted by an explicit method,
and local mesh refinement, making it feasible to resolve the steep gradients associated
with the space charge layers as well as the chemical potential, which is used in our formu-
lation to control the permeability of the membrane to the (possibly charged) solute. Low
Reynolds number fluid dynamics are described by the time-dependent incompressible
Stokes equations, which are solved by a cell-centered approximate projection method.
The dynamics of the chemical species are governed by the advection–electrodiffusion
equations, and our semi-implicit treatment of these equations results in a linear system
which we solve by GMRES preconditioned via a fast adaptive composite-grid (FAC) solver.
Numerical examples demonstrate the capabilities of this methodology, as well as its con-
vergence properties.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Almost everything around us is moving in visible and invisible ways. Within a living organism, such motion invariably
involves fluid–structure interaction. At the level of individual cells, the coupled motion of fluid and structure is linked also
to the electrodiffusion of ions.

Ca2+ ion, in particular, acts as a signal which triggers the motion of cells and of subcellular components. Examples include
the well known roles of Ca2+ in excitation–contraction in muscle [34]; in the fusion of vesicles to the plasma membrane dur-
ing the process of exocytosis, for example within the presynaptic terminal of a neuron where the result is the release of neu-
rotransmitter [46]; and in the dendritic spine, where Ca2+ triggers transient shape changes (‘‘twitching spines”) and is
thought to play a role in synaptic plasticity [35]. In the case of dendritic spines, it is particularly noteworthy that the dynam-
ics of Ca2+ within the spine head is determined not only by diffusion but also by fluid flow [47], that flow being induced by
the Ca2+-triggered contraction of the spine.

Osmotic phenomena also couple the motion of fluid to that of solute. In biology, on the cellular and subcellular scales,
osmosis is the principal mechanism for the movement of water, and is therefore of fundamental importance. When the rel-
evant solutes are charged, as is typically the case in the biological context, their motions, and therefore the motions of the
. All rights reserved.
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water that they produce, are strongly influenced by electrical effects. These considerations are crucial in the control of cell
volume [36], in the transport of water across epithelia [48], in the movement of water within cells [49], and therefore in cell
locomotion [50].

The computer simulation of osmotic phenomena but with neutral solutes has previously been done by Atzberger and col-
leagues [51]. In common with the present work, these authors used an immersed boundary method [7], which involves an
Eulerian description of the fluid and solutes together with a Lagrangian description of immersed boundaries. The case of
charged solutes has been undertaken by Rhyham and colleagues [39], who, in contrast to the approach taken here, used a
fully Eulerian, phase-field method.

Also related to the present paper is a much larger body of work on electrodiffusion [52] without fluid flow. In this field, we
mention the pioneering work of van Roosbroek [53], which was done in the context of the invention of the transistor, and
also the research of Eisenberg and colleagues [54] on the Poisson–Nernst–Planck (PNP) equations as applied especially to ion
transport through membrane channels. Finally, in this category, we mention the related work of Mori et al. [40,55], who use
a finite-volume methodology [37,38] to simulate electrodiffusion in the electroneutral limit, in which solute concentrations
are constrained to satisfy local electroneutrality, and in which space charge layers are regarded as infinitely thin and are
therefore incorporated into internal boundary conditions. In the present work, by contrast, space charge layers have a finite
(i.e., nonzero) thickness, and approximate local electroneutrality outside of the space charge layers emerges as a conse-
quence of the basic electrodiffusion equations without any limiting process being used to simplify those equations before
undertaking their numerical solution. The present methods are therefore more suitable for smaller scale problems, in which
it may be important to resolve the space charge layers, instead of treating them as infinitely thin. For larger scale problems,
however, the methods of [40,55] are likely to be more efficient, precisely because they do not require the resolution of the
space charge layer.

In the present work, we describe a version of the immersed boundary method for problems of fluid–solute–structure
interaction, i.e., fluid–structure interaction problems which include the advection–diffusion of one or more species of solutes
[1]. We impose smoothed chemical potential barriers along internal boundaries or membranes. By means of these chemical
potential barriers, the permeability of each solute across a membrane can be separately controlled. Although we do not do so
at present, the chemical potential barriers for the different solutes can be spatially inhomogenous, and in this way our frame-
work allows for the simulation of localized ion-selective membrane channels. Similarly, the chemical potential barriers can
have local time dependence to simulate the stochastic opening and closing of membrane channels. Because the membrane
appears in our computation as a collection of smooth chemical potential barriers (one for each solute), there are no boundary
conditions per se to be applied at the membrane, and we are able to use a Cartesian grid covering the entire domain, with
possible local Cartesian mesh refinement. In our methodology, there is no sharp distinction between the interior and exterior
domain.

The numerical scheme for fluid–solute-structure interaction introduced in this paper employs linearly implicit timestep-
ping and Cartesian grid local mesh refinement. We use the block-structured Cartesian grid adaptive mesh refinement (AMR)
approach of Berger and Oliger [2] and Berger and Collela [3], an approach that was introduced in the context of shock cap-
turing methods for hyperbolic partial differential equations. In the present context, this approach makes it feasible to resolve
the steep gradients associated with the space charge layers that develop on either side of the membrane in our computa-
tions, as well as the steep gradients associated with the chemical potential barriers that model the membrane itself. Low
Reynolds number fluid dynamics are described by the time-dependent incompressible Stokes equations, which are solved
by a cell-centered approximate projection method [4–6]. The dynamics of the chemical species are governed by the advec-
tion–electrodiffusion equations. We use a semi-implicit discretization of these equations which results in a linear system of
equations for the updated solute concentrations. This linear system is solved at each timestep by GMRES preconditioned via
a fast adaptive composite-grid (FAC) solver.

The paper is organized as follows: In Section 2, we present the continuous formulation of the immersed boundary method
with advection–electrodiffusion. In Section 3, an uniform grid discretization with implicit timestepping is proposed for the
governing equations. In Section 4, we describe the locally refined formulation of the numerical scheme. In Section 5, we
briefly discuss implementation details, including linear solvers for locally refined grids. In Section 6, we present the results
of several illustrative computations involving diffusion, advection–diffusion, electrodiffusion, and advection–electrodiffu-
sion with a single neutral solute or with two ionic species, with either a fixed or a moving boundary. In Section 7, we present
a convergence test which demonstrates that the method of this paper is first-order accurate. Finally, in Section 8, we con-
clude and discuss some possible future applications of the methodology.
2. Mathematical formulation of the immersed boundary method with advection–electrodiffusion

In the present work, we consider a fixed two-dimensional physical domain filled with a viscous, incompressible fluid that
contains dissolved solute, which may be neutral or charged. Immersed within the domain is a closed membrane, which may
either be fixed in place or be mobile and elastic. In the latter case, we assume that the mass of the membrane may be
neglected, so that the sum of the forces acting on any part of the membrane is always equal to zero. The membrane may
be permeable or impermeable to solute, and the permeability is controlled in a graded manner by a chemical potential
barrier.
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Throughout this work, we employ the following constants:
Dk diffusion coefficient of the kth solute species
q the elementary electrical charge (charge on a proton)
qzk charge of the kth species of solute
e dielectric constant of fluid medium
KB Boltzmann constant
T absolute temperature (degrees Kelvin)
q fluid density
l fluid viscosity

The Eulerian domain and its variables are denoted as follows:
XE Eulerian domain
x ¼ ðx1; x2Þ 2 XE fixed Eulerian physical coordinates
uðx; tÞ ¼ u1ðx; tÞ;u2ðx; tÞð Þ fluid velocity
pðx; tÞ fluid pressure
WðxÞ chemical potential kernel
wkðx; tÞ chemical potential associated with the kth solute species
ckðx; tÞ concentration of the kth solute species
Jkðx; tÞ flux per unit area of the kth solute species
uðx; tÞ electrical potential
qeðx; tÞ electrical charge density

The Lagrangian domain and its variables are denoted in the following way:
XL Lagrangian domain of the immersed membrane
s 2 XL moving Lagrangian material coordinate attached to the membrane
Xðs; tÞ ¼ X1ðs; tÞ;X2ðs; tÞð Þ position of Lagrangian point s at time t
E½Xð�; tÞ� internal elastic energy stored in the membrane
FEðs; tÞ Lagrangian force density applied by the membrane
Fmsðs; tÞ Lagrangian force density applied by the membrane to the solute
Fmf ðs; tÞ Lagrangian force density applied by the membrane to the fluid
Akðs; tÞds contribution of arc ðs; sþ dsÞ of membrane to chemical potential of kth solute species

In our formulation, chemical potentials are used to control the permeability of the membrane to the different solutes that
may be present. The chemical potential of the kth solute species is expressed by
wkðx; tÞ ¼
Z

XL

Wðx� Xðs; tÞÞAkðs; tÞds: ð1Þ
Here, X(s, t) is the configuration of the immersed membrane at time t, where s is a Lagrangian parameter. The function Akðs; tÞ
describes the contribution of the membrane at X(s, t) to the chemical potential barrier for the kth species. The chemical po-
tential kernel WðxÞ defines how the contribution Akðs; tÞds is to be spread out in space in the neighborhood of X(s, t).

In general, any bell-shape function with compact support can be used to construct the chemical potential kernel. To con-
struct W, we use the four-point smoothed Dirac delta function /ðrÞ described by Peskin [7]. The function /ðrÞ is given by
/ðrÞ ¼

0; jrjP 2;
1
8 5� 2jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
; 2 P jrjP 1;

1
8 3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� �
; 1 P jrjP 0;

8>>><
>>>:

ð2Þ
where r 2 R. The two-dimensional chemical potential kernel is taken to be the tensor product of the one-dimensional
smoothed delta functions, i.e.,
WwðxÞ ¼
1

w2 /
x1

w

� �
/

x2

w

� �
: ð3Þ
Here, w is a scaling factor so that Ww is supported on a 4w� 4w square centered at the origin.
The electrical potential is the solution of the Poisson equation
�r2u ¼ qe=�; ð4Þ
qe ¼

X
k

qzkck: ð5Þ
Here, qe is the electrical charge density. Note that qe is different from the fluid density q which appears below in the incom-
pressible Stokes equations. In the present work, Eq. (4) is solved on a periodic box. Consequently, a necessary condition for
the existence of a solution to Eq. (4) is that the integral of the right-hand side over the domain is zero, i.e., that the system as
a whole be electrically neutral. Note, however, that electroneutrality can be violated locally.
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Eq. (4) defines u uniquely up to an additive constant. The choice of this constant has no significance since only potential
differences have physical effects.

Each chemical species of solute satisfies the advection–electrodiffusion equation
@ck

@t
þr � Jk ¼ 0; ð6Þ

Jk ¼ �Dk rck þ ck
rðwk þ qzkuÞ

KBT

� �
þ uck: ð7Þ
Eq. (6) is the continuity equation for the kth solute species. In this equation, ck is the concentration and Jk is the flux per unit
area of this solute. Eq. (7) gives the flux per unit area as a sum of four terms: diffusion, drift caused by chemical potential
gradients, drift caused by electrical potential gradients, and advection by fluid flow. The advection component from fluid
flow is uck, where the fluid velocity u is obtained from the solution of the Stokes equations, as described below. The Eqs.
(6) and (7) are a spatially distributed form of Nernst–Plank equations [41]. The Eqs. (4)–(7) are sometimes called the Pois-
son–Nernst–Plank (PNP) equations [54]. In semiconductor physics, essentially the same equations (but with recombination
included) are called the van Roosbroeck equations [53]. A somewhat unusual feature of our formulation is the inclusion of
the advection term, but note that this is also done in Ryham et al. [39].

To describe the (low Reynolds number) fluid flow, we use the time-dependent Stokes equations,
q
@u
@t
þrp ¼ lr2uþ f; ð8Þ

r � u ¼ 0; ð9Þ
where q is the fluid density and l is the fluid viscosity. The immersed elastic membrane moves at the local fluid velocity,
@X
@t
ðs; tÞ ¼ uðXðs; tÞ; tÞ: ð10Þ
This boundary advection equation is the no-slip condition of a viscous fluid. Note that this equation implies that the mem-
brane is impermeable to fluid. (Allowing the boundary to be permeable to fluid, as is required to simulate, e.g., osmotic ef-
fects, requires a simple modification to the equation of motion for the boundary; see [8,1].)

The external force f that appears in the Stokes equations has two parts,
f ¼ fmf þ fb; ð11Þ
where fmf is the force applied by the membrane directly to the fluid in which it is immersed, and fb is the electrochemical
force transmitted to the fluid by the solutes. These forces are of the form
fmfðx; tÞ ¼
Z

XL

Fmfðs; tÞdðx� Xðs; tÞÞds; ð12Þ

fb ¼
X

k

� rwk þ qzkruð Þck: ð13Þ
In Eq. (12), Fmf ðs; tÞds is the force applied by an element ds of the membrane to the fluid in its vicinity. The delta function
expresses the local character of the fluid–structure interaction. Note that if we integrate Eq. (12) over an arbitrary physical
region X # XE, we obtain
Z

X
fmfðx; tÞdx ¼

Z
Xðs;tÞ2X

Fmfðs; tÞds; ð14Þ
which simply is the statement that the force transmitted by the membrane to the fluid in the region X is equal to the force
generated by the part of the membrane that lies within X.

In Eq. (13), the quantity � rwk þ qzkruðx; tÞð Þ is the force acting on one molecule of the kth species of solute at location x
at time t. Multiplying by ckðx; tÞ and summing over k, we obtain the force per unit volume acting on all of the chemical spe-
cies at location x at time t. This force is transmitted to the fluid by collisions between the fluid and solute molecules.

Because the membrane is massless, the elastic force applied by the membrane to the fluid and to the solute can be ex-
pressed in terms of the internal elastic energy E stored in the membrane,
� }E
}X
¼ Fmf þ Fms; ð15Þ
where }=}X is the variational derivative defined by
d
d�

E½Xþ �Y�
����
�¼0
¼
Z

}E
}X

� �
� Y dx; ð16Þ
which holds for all Y. We use the symbol } here for ‘‘perturbation” instead of the more conventional d to avoid confusion
with the Dirac delta function, which plays a prominent role in this work.
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We may obtain an explicit expression for Fmf in terms of }E=}X and Fms. Recalling that w is defined by Eq. (1), we derive
Fms, the Lagrangian form of the chemical force applied to the solutes by the membrane, via
Z

XL

Fmsðs; tÞds ¼
Z

XE

fchemicalðx; tÞdx ¼
Z

XE

X
k

�rwkckðx; tÞdx ¼
Z

XL

Z
XE

X
k

ð�rWðx� Xðs; tÞÞÞAkðs; tÞckðx; tÞdxds;

ð17Þ
where fchemical is the body force resulting from the chemical potential barrier. Just as Eq. (14) implies that the Lagrangian and
Eulerian elastic forces are equal, Eq. (17) states that the total chemical force transmitted to the fluid from the membrane is
equal to total chemical force acting on the solutes. Because Eq. (17) is satisfied on any sub-domain of XL, we have that the
Lagrangian chemical force is given by
Fmsðs; tÞ ¼
Z

XE

X
k

ð�rWðx� Xðs; tÞÞÞAkðs; tÞckðx; tÞdx: ð18Þ
Having obtained an expression for Fms, we may express the Lagrangian force applied by the membrane to the fluid as
Fmf ¼ �
}E
}X
� Fms: ð19Þ
Note that explicit formulae are available for each of the terms on the right-hand side of Eq. (19). The formula for Fms has been
given above (Eq. (18)), and a formula for }E=}X, which depends on the assumptions made about the elasticity of the mem-
brane, will be stated next.

In our examples, the immersed boundary is an elastic membrane with a stiffness coefficient Ks for which the internal elas-
tic energy E is defined in terms of the configuration of the membrane X(�, t) via
E½Xð�; tÞ� ¼
Z

XL

1
2

Ks
@X
@s

����
����� 1

� �2

ds; ð20Þ
from which we derive
FE ¼ �}E=}X ¼ @

@s
ðFTsÞ; ð21Þ
where
FT ¼ Ks
@X
@s

����
����� 1

� �
; ð22Þ

s ¼ @X=@s
j@X=@sj : ð23Þ
In these equations, FT is the tension of the elastic membrane, s is the unit tangent to the boundary, and FE ds is the elastic
force per unit length (see the discussion of units near the beginning of Section 6) applied by the arc ds of the boundary to the
fluid and solute.

3. Uniform grid discretization

In this section, we describe a linearly implicit, uniform grid discretization of the continuous governing equations of Sec-
tion 2. In many cases, when explicit timestepping methods are used, the stiffnesses of the elastic boundaries and the large
gradients in the chemical and electrostatic potentials across boundaries necessitates the use of small timesteps to obtain a
stable numerical scheme. Implicit timestepping schemes offer an approach to alleviating the stability restrictions imposed
by explicit schemes. To avoid solving a monolithic system of equations for the updated fluid, solute, and structure variables
at each timestep, however, we use a timestep-splitting approach to obtain independent backward Euler type systems of
equations for the advection–electrodiffusion and immersed boundary/Stokes systems which are solved independently each
timestep. It is important to emphasize that although our discretization gives rise to systems of equations for the advection–
electrodiffusion and immersed boundary/Stokes systems which are solved independently within each timestep, these sys-
tems are nonetheless explicitly coupled between timesteps. Indeed, an important feature of our method is that the dynamics
of the solute, fluid, and structure are fully coupled.

Eqs. (4)–(7) of the advection–electrodiffusion equations, and Eqs. (8)–(10) immersed boundary/Stokes equations are both
discretized using a linearly implicit timestepping scheme. In particular, for the advection–electrodiffusion equation satisfied
by each chemical species, the drift velocity is handled explicitly but the concentration is treated implicitly, resulting in a lin-
ear system of equations for the unknown concentrations cnþ1. In the immersed boundary/Stokes equations, the force-spread-
ing and velocity-interpolation operators are handled explicitly, as are the electrochemical body forces on the solutes, but the
elastic forces, the boundary configuration, the fluid velocity, and the fluid pressure are all treated implicitly, i.e., we solve a
linear system for Xnþ1; unþ1, and pnþ1

2. (Earlier implicit treatments of the immersed boundary method for fluid–structure
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interaction have been described by Mayo and Peskin [9], Newren et al. [10,11], and Mori and Peskin [12], among others, and
our basic approach is similar to these earlier schemes.) Although our time discretization is not fully implicit, we are none-
theless able to take significantly larger timesteps with this scheme as compared to a fully explicit time discretization.

3.1. Eulerian discretization and finite difference approximations

The Eulerian physical domain is discretized using an uniform Cartesian grid which is periodic in each coordinate direc-
tion. The locations of the grid cell centers are denoted by
xi;j ¼ iþ 1
2

� �
h; jþ 1

2

� �
h

� �
; ð24Þ
where h ¼ Dx ¼ Dy is the uniform Cartesian grid spacing. The value of a variable u(x, t) at cell center (i, j) at time t ¼ nDt is
denoted by
un
i;j ¼ uðxi;j; nDtÞ: ð25Þ
The cell-centered finite difference discretizations of the divergence, gradient, and Laplacian are denoted by Dh�; Dh, and Lh,
and are defined by
ðDh � uÞi;j ¼
ðu1Þiþ1;j � ðu1Þi�1;j

2h
þ
ðu2Þi;jþ1 � ðu2Þi;j�1

2h
; ð26Þ

ðDhvÞi;j ¼
v iþ1;j � v i�1;j

2h
;
v i;jþ1 � v i;j�1

2h

� �
; ð27Þ

ðLhvÞi;j ¼
v iþ1;j þ v i�1;j þ v i;jþ1 þ v i;j�1 � 4v i;j

h2 ; ð28Þ
which are all second-order accurate finite difference approximations.
Side-centered fluid velocities are used for the computation of the drift velocity in the advection–electrodiffusion equa-

tions. Side-centered values ðu1Þniþ1
2;j

and ðu2Þni;jþ1
2

are obtained by averaging adjacent cell-centered quantities, i.e.,
ðu1Þniþ1
2;j
¼
ðu1Þni;j þ ðu1Þniþ1;j

2
; ð29Þ

ðu2Þni;jþ1
2
¼
ðu2Þni;j þ ðu2Þni;jþ1

2
: ð30Þ
The discrete divergence of a side-centered vector field u ¼ ðu1;u2Þ is denoted by Dh=2� and is defined by
ðDh=2 � uÞi;j ¼
ðu1Þiþ1

2;j
� ðu1Þi�1

2;j

h
þ
ðu2Þi;jþ1

2
� ðu2Þi;j�1

2

h
; ð31Þ
which is also a second-order accurate finite difference approximation.

3.2. Lagrangian discretization, a smoothed version of the Dirac delta function, and Lagrangian–Eulerian interaction

The Lagrangian coordinate domain is taken to be periodic in the Lagrangian parameter s (since the membrane takes the
form of a closed curve) and is discretized on a computational lattice with uniform mesh spacing Ds. The value of a variable F
evaluated at a node s of the Lagrangian mesh at time t ¼ nDt is denoted by
Fn
s ¼ Fðs;nDtÞ: ð32Þ
Using the function /ðrÞ defined in Section 2, an one-dimensional regularized Dirac delta function is constructed as
dhðxÞ ¼
1
h

/
x
h

� �
: ð33Þ
The two-dimensional smoothed delta function is taken to be the tensor product of one-dimensional smoothed delta func-
tions, i.e.,
dhðxÞ ¼ dhðx1Þdhðx2Þ: ð34Þ
Note that dhðxÞ is supported on the 4-by-4 grid box centered at the origin.
The Lagrangian force density is spread from the Lagrangian mesh onto the Cartesian grid at time t ¼ nDt via
f i;j ¼
X

s

Fs dh xi;j � Xn
s

� 	
Ds; ð35Þ
where
P

s denotes a sum over discrete values of s, i.e., over s ¼ 0;Ds;2Ds; . . .. Similarly, the Eulerian fluid velocity is interpo-
lated from the Cartesian grid onto the Lagrangian mesh at time t ¼ nDt via
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d
dt

Xs ¼
X

i;j

ui;j dh xi;j � Xn
s

� 	
h2
; ð36Þ
for s ¼ 0;Ds;2Ds; . . ..
For notational convenience, we define the spreading operator Sn and the interpolation operator S�n by
ðSnFÞi;j ¼
X

s

Fs dh xi;j � Xn
s

� 	
Ds; ð37Þ

ðS�nuÞs ¼
X

i;j

ui;j dh xi;j � Xn
s

� 	
h2
: ð38Þ
Note that Sn and S�n are adjoint linear operators with respect to an inner product which may be interpreted as the power ap-
plied by the membrane to the fluid. A consequence of this is that the power comes out the same whether it is evaluated in
Lagrangian or in Eulerian variables.

3.3. The discretized chemical and electrical potentials

The discretized chemical potential for the kth chemical species is expressed by
ðwkÞ
n
i;j ¼

X
s

W xn
i;j � Xn

s

� �
ðAkÞns Ds; ð39Þ
and the discretized Poisson equation for the electrical potential is
�ðLhuÞni;j ¼
X

k

qzkðckÞni;j=�: ð40Þ
In our timestepping scheme, we evaluate wn
k by Eq. (39) once per timestep for each of the chemical species, and we solve Eq.

(40) for un once per timestep.

3.4. A semi-implicit discretization of the advection–electrodiffusion equations

The spatial discretization of the advection–electrodiffusion equations uses a second-order upwind method for the advec-
tion terms and a centered second-order accurate discretization for the diffusion terms. The time discretization employs a
combination of forward and backward Euler. Consequently, the method is formally second-order accurate in space but only
first-order accurate in time. The time discretization results in a linear system of equations with a non-compact 9-point finite
difference stencil.

The semi-implicit time discretization of the advection–electrodiffusion equations for the concentration ci;j ¼ ðckÞi;j of the
kth species of solute is defined by
cnþ1
i;j � cn

i;j

Dt
¼ �ðDh=2 � JÞnþ1

i;j ; ð41Þ

ðJ1Þ
nþ1
iþ1

2;j
¼ �Dk

cnþ1
iþ1;j � cnþ1

i;j

h
þ ðU1Þniþ1

2;j
cnþ1

iþ1
2;j
; ð42Þ

ðJ2Þ
nþ1
i;jþ1

2
¼ �Dk

cnþ1
i;jþ1 � cnþ1

i;j

h
þ ðU2Þni;jþ1

2
cnþ1

i;jþ1
2
; ð43Þ

ðU1Þniþ1
2;j
¼ ðu1Þniþ1

2;j
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In these equations, the chemical concentration c is treated implicitly whereas the net drift velocity U is treated explicitly. The
net chemical flux J ¼ ðJ1; J2Þ is computed at the x and y cell edges of the Cartesian grid via Eqs. (42) and (43), and the net drift
velocity is computed at the x and y edges of the grid from the fluid velocity and the electrochemical drift via Eqs. (44) and
(45).

The values of the concentrations at the cell edges are determined by a spatially second-order accurate upwind
discretization,
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An analogous formula is used to compute the values of the concentration on the y edges of the grid. Note that the choice of
which formula to use in Eq. (46) is made using the net drift velocity, which is fixed throughout the timestep. Consequently,
the system of equations which must be solved to compute cnþ1

i;j is linear.
3.5. A semi-implicit discretization of the immersed boundary/Stokes equations

The discretized immersed boundary/Stokes equations are solved using a linearly implicit scheme which makes use of an
approximate projection method [13,14,4] for the time-dependent incompressible Stokes equations. The approximate projec-
tion method used for the incompressible Stokes equations employs a Crank–Nicolson treatment of the viscous terms, and
makes use of a lagged approximation to the pressure gradient.

Before we present the discretization of the immersed boundary/Stokes equations, we first define the approximate projec-
tion operator P used in this work, namely
P ¼ I � Dh L�1
h Dh � : ð47Þ
In the uniform grid case, this approximate projection operator is the same as that introduced in Lai [13], and in the locally
refined case described in Section 4, this operator is the same as that described in Griffith et al. [15]. In either case, P can be
seen to be a finite difference approximation to the continuous projection operator I �rðr2Þ�1r�. Because Lh – Dh � Dh, gen-
erally Dh � ðPuÞ – 0, and thus P is not an ‘‘exact” projection operator. For any smooth vector field u, however,
Dh � ðPuÞ ¼ Oðh2Þ, so that P imposes the constraint of incompressibility to second-order accuracy. For further details on pro-
jection methods for incompressible flows, see [16–18].

Our linearly implicit discretization of the immersed boundary/Stokes equations is based on the following nonlinearly im-
plicit time discretization,
q
u� � un

Dt
þ Dhpn�1

2 ¼ lLh
u� þ un

2
þ Sn Fnþ1

E � Fn
ms

� �
þ fn

b; ð48Þ

unþ1 ¼ Pu�; ð49Þ
Xnþ1 � Xn

Dt
¼ S�n

unþ1 þ un

2
: ð50Þ
The foregoing system of equations defines unþ1 and Xnþ1 but not pnþ1
2. To compute pnþ1

2, we note that the definition of P im-
plies that
unþ1 ¼ u� � Dhp�; ð51Þ
Lhp� ¼ Dh � u�; ð52Þ
so that
pnþ1
2 ¼ pn�1

2 þ I � lDt
2q

Lh

� �
p�: ð53Þ
Here, we are using a second-order accurate pressure-increment projection method; for further details, see [6]. Although the
value of pnþ1

2 has no effect on the values of unþ1 or Xnþ1, the value of pnþ1
2 is used in the subsequent timestep and does affect

the values of unþ2 and Xnþ2.
In the foregoing timestepping scheme, Eqs. (48)–(50), the quantity Fnþ1

E is the Lagrangian force derived from the stored
elastic energy of the membrane and is to be computed from the unknown membrane configuration at the end of the time
step Xnþ1. This makes the above scheme implicit in the boundary force. In general, Fnþ1

E may be a nonlinear function of Xnþ1.
To simplify the task of solving the implicit equations, in practice we linearize the relationship between Fnþ1

E and Xnþ1. In par-
ticular, the implicit elastic force term Fnþ1

E is linearized about Xn via
Fnþ1
E � Fn

E þ Jn
EðX

nþ1 � XnÞ; ð54Þ
where Jn
E is the Jacobian operator defined by
Jn
E ¼

@FE

@X
ðXnÞ: ð55Þ
Replacing Fnþ1
E by Fn

E þ Jn
EðX

nþ1 � XnÞ in Eqs. (48)–(50) and algebraically rearranging terms, we obtain the following linear
equation for ðXnþ1 � XnÞ,
I þ S�nPLSnAn
� 	

ðXnþ1 � XnÞ ¼ Z; ð56Þ
where
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Eq. (56) is a linear system which we solve for ðXnþ1 � XnÞ via GMRES without preconditioning. The right-hand side Z is de-
fined entirely in terms of quantities which are known at time level n. Once this linear system has been solved, we may eval-
uate u� as
u� ¼ L z� 2SnAnðXnþ1 � XnÞ=Dt
� �

: ð61Þ
Finally, unþ1 and pnþ1
2 can be obtained from u� via Eqs. (51)–(53).
4. Local mesh refinement

In the immersed boundary method with advection–electrodiffusion, stiff elasticity makes the tangential fluid velocity
gradient large across the boundary. The gradients of the electrochemical potential are also steep near the boundary. To re-
solve these gradients efficiently, we employ local mesh refinement in the vicinity of the boundary. Previously, adaptive mesh
refinement has been used in the context of the immersed boundary method by Roma et al. [19] and Griffith et al. [15,56]. In
this section, we outline our approach to discretizing the governing equations on locally refined grids.

In the block-structured local mesh refinement approach used in the present work, the Eulerian domain is described using
a hierarchy of nested levels. Each level in the grid hierarchy is composed of the union of rectangular grid patches. All patches
in a given level share the same uniform Cartesian grid spacing, and grid spacings on adjacent levels are related by an integer
refinement ratio, which in this work is taken to be 2. Away from coarse–fine interfaces between levels of grid resolution, the
standard uniform grid discretization is used. In the vicinity of such interfaces in grid resolution, however, additional care is
required. Each grid patch possesses a layer of ghost cells which is adjacent to the patch boundary. Away from coarse–fine
interfaces, ghost cell values are obtained by copying values from adjacent patches at the same level of refinement. At
coarse–fine interfaces, ghost cell values on fine patches are computed by interpolating coarse and fine grid values. In the
present work, we employ a linear interpolation strategy introduced by Ewing et al. [20] which makes use of both coarse
and fine values in the vicinity of coarse–fine interfaces.

Following [5], our basic approach to computing cell-centered approximations to spatial differential operators on locally
refined grids is to define the discretization as the composition of three simpler operations: first, an operation which maps
cell-centered quantities to cell edges; second, an operation which ‘‘synchronizes” values along the coarse–fine interfaces
by averaging quantities defined on fine cell edges onto the overlying coarse cell edge; and third, an operation which maps
edge-centered quantities back onto cell centers. For instance, the computation of the cell-centered gradient of a cell-centered
quantity p is decomposed as (1) computing an edge-centered approximation torp on each cell edge, (2) averaging the edge-
centered approximation from finer levels onto coarser levels, and (3) interpolating the edge-centered approximation of rp
back onto cell centers. Note that ghost cell values for p are only required by step (1), in which we compute an edge-centered
approximation to rp using cell-centered data. These ghost cell values are determined via linear interpolation of coarse- and
Fig. 1. A locally refined grid comprised of two levels around the chemical potential barrier.
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fine-grid values, as mentioned previously. For further details on the construction of the finite difference discretizations of
r�;r, and r2 used in the present work, see [21,15]. The same approach is used to construct a composite-grid cell-centered
discretization of the advection–electrodiffusion equations. Note that only one layer of ghost cells is required to evaluate our
Fig. 2. Concentration distribution in a simulation of the diffusion of one solute species interacting with a membrane at rest. The left panel shows the solute
concentration distribution on the composite grid at t ¼ 0:2 ms. The right panel shows graphs of solute concentration (blue) and chemical potential (red)
along the line y ¼ 0:5 lm, which cuts through the center of the domain. The dotted blue curve depicts the initial solute concentration, and the solid blue
curve depicts the solute concentration at t ¼ 0:2 ms. Since the chemical potential barrier is high in comparison to KBT , there is little movement of solute.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Concentration distribution in a simulation of the advection–diffusion of one solute species interacting with a moving elastic membrane. The upper
panels show the solute concentration distribution on the composite grid at times 0.0 ms (left) and 0.2 ms (right). The lower panels are graphs of solute
concentration as a function of x at y ¼ 0:5 lm (left), and as a function of y at x ¼ 0:5 lm (right). In these lower panels, the broken curve shows the initial
concentration profile for reference, and the solid curve shows the concentration profile at t ¼ 0:2 ms. Note the inward displacement over time of the
concentration profile plotted as a function of x (lower left panel), and the outward displacement over time of the concentration profile plotted as a function
of y (lower right panel).



Fig. 6. Concentration distribution of Cl� in a simulation of the electrodiffusion of two ionic species interacting with a membrane at rest. The left panel
shows the Cl� distribution on the composite grid at t = 0.2 ms. The right panel is a graph of the Cl� concentration profile as a function of x along the line
y ¼ 2:5 lm, which goes through the center of the domain. The broken curve shows the initial Cl� concentration profile for reference, and the solid curve
shows the Cl� concentration profile at t ¼ 0:2 ms. At the initial time, the concentration of Cl� in the interior and exterior regions are 2.0 lM and 8.0 lM,
respectively. The membrane is almost impermeable to Ca2+, but freely permeable to Cl�. Only enough Cl� crosses the membrane to set up space charge
layers that generate an electrical potential difference across the membrane that is large enough to prevent further transmembrane flux of Cl�.

Fig. 5. Concentration distribution of Ca2+ in a simulation of the electrodiffusion of two ionic species interacting with a membrane at rest. The left panel
shows the Ca2+ distribution on the composite grid at t ¼ 0:2 ms. The right panel is a graph of the Ca2+ concentration profile as a function of x along the line
y ¼ 2:5 lm, which goes through the center of the domain. The broken curve shows the initial Ca2+ concentration profile for reference, and the solid curve
shows the Ca2+ concentration profile at t ¼ 0:2 ms. At the initial time, the concentration of Ca2+ in the interior and exterior regions are 1.0 lM and 4.0 lM,
respectively. Note the excess concentration of calcium ions near the outer side of the membrane at time t ¼ 0:2 ms. There is a high chemical potential
barrier to the diffusion of Ca2+ across the membrane, but the membrane is freely permeable to Cl� in this simulation.

Fig. 4. Pressure distribution in a simulation of the advection–diffusion of one solute species interacting with a moving elastic membrane. The left panel is at
time t ¼ 0:0 ms, and the right panel is at time t ¼ 0:2 ms.

5218 P. Lee et al. / Journal of Computational Physics 229 (2010) 5208–5227



P. Lee et al. / Journal of Computational Physics 229 (2010) 5208–5227 5219
cell-centered approximations to the divergence, gradient, and Laplace operators, whereas two layers of ghost cells are re-
quired to evaluate the cell-centered approximation to the advection–electrodiffusion equations.

In the present work, the locally refined grid is constructed at the beginning of the simulation and is not adaptively up-
dated as the simulation progresses. Grid patches are generated by tagging cells for refinement and applying the box-gener-
ation algorithm of Berger and Rigoutsos [22]. Cells are tagged for refinement within the support of the chemical potential
barrier. An example of a locally refined mesh is shown in Fig. 1.
5. Implementation details

Our implementation of the foregoing numerical scheme employs several freely-available software libraries. Krylov sub-
space iterative methods such as GMRES are provided by the PETSc library [23–25]. Grid generation and data management for
locally refined grids is provided by the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library
[26–28].

To solve the immersed boundary/Stokes equations, we must solve Poisson problems resulting from the implicit treatment
of the viscous terms and the application of the approximate projection operator. To solve the advection–electrodiffusion
Fig. 7. Electrical charge density in a simulation of the electrodiffusion of two ionic species interacting with a membrane at rest. The left panel shows the
electrical charge density distribution on the composite grid at t ¼ 0:2 ms. The right panel is a graph of the electrical charge density as a function of x along
the line y ¼ 2:5 lm, which goes through the center of the domain. The dotted line shows the initial charge density, which is identically zero. The solid line
shows the charge density at t ¼ 0:2 ms. Note the spontaneous formation of space charge layers adjacent to the membrane. The net charge density organizes
itself into a double layer, with equal and opposite charges on the inner and outer sides of the membrane, which therefore acts like a capacitor.

Fig. 8. Electrical potential in a simulation of the electrodiffusion of two ionic species interacting with a membrane at rest. The left panel shows the electrical
potential distribution on the composite grid at t ¼ 0:2 ms. The right panel is a graph of the electrical potential as a function of x along the line y ¼ 2:5 lm,
which goes through the center of the domain. The dotted line shows the initial electrical potential, which is identically zero. The solid line shows the
electrical potential profile at t ¼ 0:2 ms. Note the emergence of a potential difference across the membrane. This is a consequence of the disparity between
the membrane permeabilities of Ca2+ and Cl�. Recall that we have imposed a high chemical potential barrier to transmembrane Ca2+ diffusion, but no
chemical potential barrier at all to transmembrane Cl� diffusion. Enough Cl� crosses the membrane to build up an electrical potential barrier sufficient to
prevent further transmembrane flux of Cl�.
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equations, we must solve one advection–electrodiffusion equation for each chemical species. In all cases, we employ a stan-
dard fast adaptive composite-grid (FAC) method [29] as a preconditioner for GMRES. (For details on the FAC algorithm used
in this work, see [21].) We use the PFMG uniform grid geometric multigrid solver [30,31] from the hypre library [32,33] as a
bottom-solver in this FAC preconditioner. Note that the hypre geometric multigrid solvers are designed for finite difference,
finite-volume, or finite element discretizations with compact 5-point or compact 9-point stencils. Our discretization of the
advection–electrodiffusion equation makes use of a non-compact 9-point stencil, however. Thus, for the multigrid bottom
solver used by the FAC preconditioner, we replace the second-order upwind scheme described in Section 3.4 with a standard
first-order upwind scheme, because such schemes require only a standard compact 5-point stencil. Note that we only use the
first-order upwind scheme in the bottom-solver for the FAC algorithm. In particular, our use of a lower-order discretization
in the preconditioner does not affect the accuracy of our spatial discretization of the advection–electrodiffusion equations.

As convergence criteria, we choose a relative tolerance of 1.0e�12 and an absolute tolerance of 1.0e�15. In the multigrid
algorithm, we apply only three sweeps of post-smoothing when solving Poisson equations, and we apply three sweeps of
pre- and post-smoothing when solving the advection–electrodiffusion equations.
6. Numerical examples

Several numerical examples are presented to demonstrate the capabilities of the scheme. We consider the cases of one
solute with an elastic membrane at rest, one solute with a moving elastic membrane, two ions with an elastic membrane
at rest, and finally two ions with a moving elastic membrane.

The value of the stiffness constant Ks is chosen to be 1:0� 10�5 N=m. In all cases, the viscosity of the fluid is
11:3� 10�4 Pa s, and the density of the fluid is 998.0 kg/m3. The diffusion coefficients of solute and ions are 2:0� 10�10 m2=s.

Note that we regard the plane of the computation as the cross-section of a three-dimensional physical problem in which
all variables are independent of the coordinate whose axis is normal to the plane of the computation. The units are those of
the three-dimensional problem, even though the computation is two-dimensional. In particular, the elastic ‘‘energy” E is
Fig. 9. Concentration distribution of Ca2+ in a simulation of the advection–electrodiffusion of two ionic species interacting with a moving elastic membrane.
The upper panels show the Ca2+ concentration distribution on the composite grid at time t ¼ 0:025 ms (left) and at t ¼ 0:225 ms (right). The lower panels
show Ca2+ concentration profiles through the center of the domain. In each of these lower panels, the dotted curve shows the concentration profile at
t ¼ 0:025 ms, and the solid curve shows the concentration profile at t ¼ 0:225 ms. In the lower left panel the concentrations at the two times are plotted as
functions of x for fixed y, and in the lower right panel they are plotted as functions of y for fixed x. As the elliptical membrane becomes more circular, the
concentration profiles shift accordingly. The membrane is only slightly permeable to Ca2+. Note the buildup of Ca2+ adjacent to the membrane, which
contributes to the space charge layer.
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actually the energy per unit length of the membrane, the length in question being normal to the plane of the computation.
Other units, such as those of the stiffness coefficient Ks, follow from those of E.
6.1. One solute species with a membrane at rest

In our first example, we consider the diffusion of a single solute species which interacts with a circular membrane. The
membrane is in mechanical equilibrium, and does not move in this computation. At the initial time, the concentration of the
solute is 10 lM in the exterior region (i.e., exterior to the membrane) and 1 lM in the interior. The membrane is imperme-
able to solvent, and carries a chemical potential barrier to solute penetration. The width of the chemical potential barrier is
40 nm, and its height is about 17KBT . The physical domain is a periodic box with a length of 1 lm in each coordinate direc-
tion. The elastic membrane is a circle centered at (0.5 lm,0.5 lm) and with radius 0.15 lm. The concentration distributions
are shown in Fig. 2.
6.2. One solute with a moving elastic membrane

In our second example, we again consider the dynamics of a single solute species interacting with an elastic membrane,
but in this case, we initialize the membrane in a non-equilibrium configuration.

At the initial time, the concentration of the solute in the interior and exterior regions are 1.0 lM and 5.0 lM, respectively.
The initial configuration of the membrane is an ellipse with major diameter and minor diameter in a ratio of 3:2. As the sim-
ulation progresses, the elastic membrane undergoes damped oscillations about its circular equilibrium configuration. The
resulting concentration distributions are shown in Fig. 3, and the pressure distribution is shown in Fig. 4.
Fig. 10. Concentration distribution of Cl� in a simulation of the advection–electrodiffusion of two ionic species interacting with a moving elastic membrane.
The upper panels show the Cl� concentration distribution on the composite grid at time t ¼ 0:025 ms (left) and at t ¼ 0:225 ms (right). The lower panels
show Cl� concentration profiles through the center of the domain. In each of these lower panels, the dotted curve shows the concentration profile at
t ¼ 0:025 ms, and the solid curve shows the concentration profile at t ¼ 0:225 ms. In the lower left panel the concentrations at the two times are plotted as
functions of x for fixed y, and in the lower right panel they are plotted as functions of y for fixed x. As the elliptical membrane becomes more circular, the
concentration profiles shift accordingly. Even though the membrane is freely permeable to Cl�, the interior and exterior Cl� concentrations do not equalize
because of the transmembrane electrical potential that develops as Cl� diffuses inward but Ca2+ is for the most part prevented by a chemical potential
barrier from crossing the membrane.
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6.3. Two ionic species with a membrane at rest

Next, we simulate the electrodiffusion of two ionic species, Ca2+ and Cl�, interacting with an elastic membrane in a cir-
cular, equilibrium configuration. The physical domain is a periodic box with a length of 5 lm in each coordinate direction.
The elastic membrane is a circle centered at (2.5 lm,2.5 lm) and with radius 1.5 lm. At the initial time, the concentration of
Ca2+ is 4 lM in the exterior region and 1 lM in the interior region, and the concentration of Cl� is 8 lM in the exterior region
and 2 lM in the interior region, yielding an electroneutral configuration. The membrane is nearly impermeable to Ca2+ and
freely permeable to Cl�. The Ca2+ and Cl� concentration distributions are shown in Figs. 5 and 6. The resulting electrical
charge density and electrical potential are shown in Figs. 7 and 8.

The thermodynamic relationship of the Nernst equation [45] in the steady state is satisfied by the permeable Cl� ion in
the following way:
Fig. 11
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The computed values (to three digits accuracy) are the following:
uin �uout ¼ �13:6 mV� ð22:5 mVÞ ¼ �36:1 mV; ð63Þ
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¼ �36:0 mV; ð64Þ
where uout; cout are observed at (0,2.5 lm), and uin; cin are observed at (2.5 lm,2.5 lm). That is, the electrical potential dif-
ference between the intracellular and extracellular domains in Fig. 8 is balanced by the concentration ratio of Cl� ion that can
be seen in Fig. 6.
. Electrical charge density in a simulation of the advection–electrodiffusion of two ionic species interacting with a moving elastic membrane. The
anels show the charge density distribution on the composite grid at time t ¼ 0:025 ms (left) and at t ¼ 0:225 ms (right). The lower panels show

density profiles through the center of the domain. In each of these lower panels, the dotted curve shows the charge density at t ¼ 0:025 ms, and the
rve shows the charge density at t ¼ 0:225 ms. In the lower left panel the charge densities at the two times are plotted as functions of x for fixed y,
the lower right panel they are plotted as functions of y for fixed x. As the elliptical membrane becomes more circular, the charge densities shift
ngly. Note the emergence of space charge layers adjacent to the membrane, and that the charge density remains near zero (local electroneutrality)
in these space charge layers.
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In this simulation we clearly see the difference between electrodiffusion and diffusion. Even though there is no chemical
potential barrier to transmembrane movement of Cl�, only a small amount of Cl� actually crosses the membrane, enough to
build up space charge layers which generate a potential difference that is strong enough to oppose further movement of Cl�.
Away from the membrane, the system maintains local electroneutrality. The surface charge densities of the space charge lay-
ers just outside and just inside of the membrane are þ6:46� 10�17 C=lm2 and�6:46� 10�17 C=lm2, respectively. These sur-
face charge densities were evaluated from the computational result at the time t ¼ 0:2 ms in the following way. First
integrate the net charge density (charge per unit volume) over that part of the plane of the computation for which the
net charge density is positive. This gives a quantity with units of charge per unit length. Next, divide by the circumference
of the membrane at the time of interest ð9:42 lmÞ to get the charge per unit area of the positive space charge layer. The same
procedure with the integral being evaluated instead over that part of the plane of the computation for which the net charge
density is negative yields the charge per unit area of the negative space charge layer. Note that the whole story of electro-
neutrality away from the membrane with space charge layers of equal magnitude and opposite sign on the two sides of the
membrane [44] emerges here as a result of the computation instead of being postulated in advance.
6.4. Two ionic species with a moving elastic membrane

Finally, we simulate the advection–electrodiffusion of two ionic species, Ca2+ and Cl�, interacting with a moving elastic
membrane. In this case, the physical domain is the same as in the case of two ions with a membrane at rest, but here the
initial configuration of the membrane is an ellipse with a diameter ratio of 3:2. At the initial time, the concentration of
Ca2+ is 4 lM in the exterior region and 1 lM in the interior region, and the concentration of Cl� is 8 lM in the exterior region
and 2 lM in the interior region, yielding an electroneutral configuration. The membrane is weakly permeable to Ca2+ and
freely permeable to Cl�.
Fig. 12. Electrical potential in a simulation of the advection–electrodiffusion of two ionic species interacting with a moving elastic membrane. The upper
panels show the electrical potential on the composite grid at time t ¼ 0:025 ms (left) and at t ¼ 0:225 ms (right). The lower panels show electrical potential
profiles through the center of the domain. In each of these lower panels, the dotted curve shows the electrical potential profile at t ¼ 0:025 ms, and the solid
curve shows the electrical potential profile at t ¼ 0:225 ms. In the lower left panel the potentials at the two times are plotted as functions of x for fixed y,
and in the lower right panel they are plotted as functions of y for fixed x. As the elliptical membrane becomes more circular, the electrical potential profiles
shift accordingly. Notice, too, the development of local minima of potential just inside the membrane. This is related to the triphasic distribution of space
charge across the membrane, as shown in the previous figure, which may in turn be a transient effect associated with the nonzero permeability of the
membrane to Ca2+.



Fig. 13. Pressure in a simulation of the advection–electrodiffusion of two ionic species interacting with a moving elastic membrane. The upper panels show
the pressure on the composite grid at time t ¼ 0:025 ms (left) and at t ¼ 0:225 ms (right). The lower panels show pressure profiles through the center of the
domain. In each of these lower panels, the dotted curve shows the pressure profile at t ¼ 0:025 ms, and the solid curve shows the pressure profile at
t ¼ 0:225 ms. In the lower left panel the pressures at the two times are plotted as functions of x for fixed y, and in the lower right panel they are plotted as
functions of y for fixed x. As the elliptical membrane becomes more circular, the pressure profiles shift accordingly. Besides the pressure jump across the
membrane, which is present both early and late in the simulation, there are pressure gradients at the earlier time (broken curves) throughout the moving
fluid. These pressure gradients disappear as the membrane settles into its circular equilibrium configuration and the pressure profiles become essentially
piecewise constant (solid curves).

5224 P. Lee et al. / Journal of Computational Physics 229 (2010) 5208–5227
Between t = 0.0 ms and t = 0.025 ms, the membrane is held fixed while the two ionic species undergo electrodiffusion.
This gives the space charge layers time to develop. After t = 0.025 ms, the membrane is free to move and we can observe
the evolution of the already developed space charge layers as the membrane deforms.

The Ca2+ and Cl� concentration distributions are shown in Figs. 9 and 10. The resulting electrical charge density and elec-
trical potential are shown in Figs. 11 and 12. The pressure distribution is shown in Fig. 13.
7. Convergence

We now assess the convergence properties of the algorithm on a sequence of two-level computational grids XN , where N
is the number of Cartesian grid points in each coordinate direction on the coarse level of the two-level locally refined grid.
Local mesh refinement is deployed in the vicinity of the chemical potential barrier in a manner described below.

Because analytic solutions are not available to assess the accuracy of the scheme, we employ standard methods to esti-
mate the convergence rate of the algorithm. Briefly, we use a coarsening operator IN

2N which averages quantities defined on
X2N onto XN . Differences between solutions obtained on coarse and fine grids are measured using discrete Lp norms. These
are defined for p = 1 or 2 by
kukp
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where hl is the mesh width corresponding to level l of the locally refined grid, and where the valid grid cells on level l are
precisely those grid cells which are not covered by grid cells on finer levels of the hierarchical grid. The error EN and conver-
gence ratio RN in the discrete Lp norm are defined by



Table 1
Convergence property for diffusion and advection–diffusion. From the examples of Sections 6.1 and 6.2, numerical error EN

p and convergence ratio RN
p are

computed on the two-level locally refined grids XN with discrete Lp norms. For the diffusion of one species of solute with a membrane at rest, only solute
concentration c0 is considered at t = 0.1 ms. When one species of solute does interact with a moving elastic membrane, both solute concentration c0 and fluid
velocity u are employed at t = 0.1 ms.

c0 without advection (lM) c0 with advection (lM) u (lm/s)

E64
2

2.29e�3 1.26e�3 3.51e�4

E128
2 R64

2
1.31e�3 1.75 7.26e�4 1.74 1.18e�4 2.98

E256
2 R128

2
7.27e�4 1.80 3.87e�4 1.87 4.95e�5 2.38

E64
1

7.40e�10 5.55e�10 2.39e�10

E128
1 R64

1
4.09e�10 1.81 3.15e�10 1.76 7.14e�11 3.35

E256
1 R128

1
2.10e�10 1.95 1.69e�10 1.86 2.96e�11 2.41

Table 2
Convergence property for electrodiffusion. From the example of Section 6.3, numerical error EN

p and convergence ratio RN
p are computed on the two-level locally

refined grids XN with discrete Lp norms. The concentrations of two species of Ca2+ and Cl�, electrical charge density qe as well as electrical potential u are
employed at t = 0.1 ms.

[Ca2+] (lM) [Cl�] (lM) qe (lC) u (mV)

E64
2

7.62e�3 1.43e�2 2.884e�4 4.738e�6

E128
2 R64

2
4.43e�3 1.72 7.92e�3 1.81 1.658e�4 1.74 2.507e�6 1.89

E256
2 R128

2
2.40e�3 1.85 4.24e�3 1.87 8.865e�5 1.87 1.319e�6 1.90

E64
1

2.25e�8 4.24e�8 6.482e�10 2.323e�10

E128
1 R64

1
1.28e�8 1.75 2.38e�8 1.78 3.466e�10 1.87 1.210e�10 1.92

E256
1 R128

1
6.90e�9 1.86 1.26e�8 1.89 1.815e�10 1.91 6.173e�11 1.96

Table 3
Convergence property for advection–electrodiffusion. From the example of Section 6.4, numerical error EN

p and convergence ratio RN
p are computed on the two-

level locally refined grids XN with discrete Lp norms. In addition to the concentrations of two species of Ca2+ and Cl�, electrical charge density qe , and electrical
potential u, fluid velocity u is employed at t = 0.1 ms.

[Ca2+] (lM) [Cl�] (lM) qe (lC) u (mV) u (lm/s)

E64
2

5.82e�3 1.09e�2 2.778e�4 1.454e�5 4.347e�3

E128
2 R64

2
3.40e�3 1.71 6.25e�3 1.75 1.561e�4 1.78 8.078e�6 1.80 1.469e�3 2.96

E256
2 R128

2
1.86e�3 1.83 3.36e�3 1.86 8.528e�5 1.83 4.438e�6 1.82 6.556e�4 2.24

E64
1

1.33e�8 2.67e�8 4.756e�10 3.024e�11 1.167e�8

E128
1 R64

1
7.16e�9 1.86 1.48e�8 1.81 2.571e�10 1.85 1.671e�11 1.81 3.752e�9 3.11

E256
1 R128

1
3.73e�9 1.92 7.89e�9 1.87 1.375e�10 1.87 8.793e�12 1.90 1.617e�9 2.32
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EN
p ¼ uN � IN

2Nu2N



 




p
; ð66Þ

RN
p ¼

EN
p

E2N
p

; ð67Þ
where uN is a quantity defined on computational domain XN , respectively. In the present convergence tests, we consider
N = 64, 128, 256, and 512. The timestep duration DtN and Lagrangian mesh spacing DsN corresponding to XN are determined
to keep DtN=hlmax and DsN=hlmax fixed, independent of N.

The problem setups are exactly the same as the previous numerical examples in Section 6. Tables 1–3 show the conver-
gence ratios obtained for the various problems at time t ¼ 0:1 ms. The overall accuracy is essentially first-order (correspond-
ing to convergence ratios R � 2), as expected.
8. Summary and Conclusions

This paper extends the application domain of the immersed boundary method from problems of fluid–structure interac-
tion to problems of advection–electrodiffusion with fluid–structure interaction. In particular, we have introduced a compu-
tational method to solve the equations of advection–electrodiffusion of ionic (and/or neutral) solutes in a Stokes fluid
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containing an elastic membrane. In this paper, the membrane is impermeable to solvent, and solute permeability is con-
trolled by a chemical potential barrier that may be chosen separately for each solute species and may also be varied spatially
and/or temporally, e.g., to simulate localized channels that fluctuate open and closed. Membrane permeability to solvent
may be added by following the methodology used to simulate a porous immersed boundary described in [8,1].

When the solute particles are charged, and the system as a whole is electrically neutral, we have seen that the method-
ology of this paper automatically produces the phenomena that are characteristic of electrodiffusion in the presence of a
membrane, namely electroneutrality away from the membrane and the formation of space charge layers in the region imme-
diately adjacent to the membrane, together with an electrical potential that varies rapidly as function of position across the
membrane and the space charge layers, and only slowly elsewhere.

Although local electroneutrality outside of the space charge layers was not guaranteed but emerges to a good approxi-
mation as a result of our computations, global electroneutrality was enforced a priori by the use of periodic boundary con-
ditions. We leave for future work the consideration of other boundary conditions that will allow the treatment of globally
charged systems. The methods described in Griffith et al. [56] for the use of non-periodic, physical boundary conditions
in immersed boundary computations may be useful for this purpose.

An important feature of this work is that the fluid–structure interaction aspects of the problem are fully coupled to the
solute dynamics. In particular, forces applied to the solute by the chemical potential barrier of the membrane are transmitted
to the surrounding fluid, and these forces (with opposite sign) are likewise felt by the membrane itself. These mechanical
aspects of membrane–solute interaction will be particularly important (once membrane permeability to solvent has been
implemented) in the computer simulation of osmotic effects.

The numerical methodology of this paper employs Cartesian grid local mesh refinement in order to resolve efficiently the
steep gradients in electrical potential, chemical potential, solute concentration, and hydrostatic pressure that occur near and
across the elastic membrane. Local mesh refinement is here combined with a linearly implicit timestepping scheme that
maintains stability without requiring excessively small time step durations. Such an implicit scheme is especially needed
because local mesh refinement makes possible the introduction of especially fine grids, which would otherwise require espe-
cially small time steps. Convergence testing shows that the scheme is first-order accurate, which is the typical result when
the immersed boundary method is applied to problems with sharp interfaces.

It is our belief that the methodology of this paper will be especially useful for biophysical problems at the subcellular
level. Potential applications are those in which ionic fluxes are coupled to mechanical effects, either for osmotic reasons,
or because the ionic concentration changes trigger contraction of cytoskeletal elements. Such processes are believed to occur,
for example, in dendritic spines [42,47], which are the principal targets of synapses in the central nervous system, and also in
the outer hair cells of the cochlea [43], which amplify the cochlear wave and sharpen auditory tuning as a consequence of
their electromechanical activity. This paper provides an unified methodology for such biophysical problems.
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